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We propose a strategy for the detection of temporal irreversibility in stationary time series based on multiple
bidimensional tests. The test is helpful to evaluate the displacement of irreversibility toward high dimensions.
The test can be used independently of the theoretical functionals actually utilized to check irreversibility. The
method was applied to simulated nonlinear signals generated by the delayed Henon map and a two-loop
negative feedback model to show how the presence of a delay could produce the displacement of irreversibility
toward higher dimensions. The method was applied also to series of a biological variable �i.e., heart period�
that is known to be regulated by multiple feedback loops. Simulations and real data support the need of
exploring progressively increasing embedding dimensions when assessing temporal irreversibility.
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Among several aspects of a time series that can be quan-
tified, time irreversibility has recently gained attention in bi-
ology and medicine �1,2�. This attention is simply the result
of the ability of time irreversibility analysis to detect nonlin-
ear dynamics �3,4�, and indicates the existence of disequilib-
rium states �5�, i.e., two fundamental properties of living
dynamical systems.

In time series analysis, a signal is said to be reversible if
its statistical properties are invariant with respect to time
reversal, otherwise it is said to be irreversible. From this
definition, reversible time series have the joint probability of
(x�i� ,x�i+1� , . . . ,x�i+L−1�) indistinguishable from that of
(x�i+L−1� ,x�i+L−2� , . . . ,x�i�), where L is the embedding
dimension.

Usually time irreversibility tests have been devised in
low-dimensional phase spaces, basically by comparing the
distribution of points in the plane (x�i� ,x�i+1�) to that in the
plane (x�i+1� ,x�i�) �6–10�. However, dynamics might be
roughly reconstructed in a low-dimensional phase space be-
cause complex patterns cannot be completely unfolded, and,
accordingly, low-dimensional irreversibility tests may lead to
unreliable results especially when dealing with high-
dimensional systems such as those including delays �11�.

Few times irreversibility analysis has been carried out in a
dimensional phase space (x�i� ,x�i+1� , . . . ,x�i+L−1�) with
L�2 and in these applications L has been fixed to arbitrary
values �i.e., L=4 or 5� �2,4�, thus preventing one from un-
derstanding the information that can be derived when L is
progressively increased.

In the cardiovascular system, regulations are usually per-
formed via multiple feedback loops incorporating different
delays �12,13�, thus leading to systems that can be high di-
mensional and might show time scales characterized by dif-

ferent dynamical properties including a different degree of
time irreversibility. In this study we propose a multiple test-
ing strategy for the detection of temporal irreversibility in
time series. The test is helpful to evaluate the displacement
of irreversibility toward high dimensions. The test can be
used independently of the theoretical functional actually uti-
lized to check irreversibility �among all present in literature
�6–9�, here we utilized the one proposed in �9��. The method
was applied to simulated nonlinear signals generated by the
delayed Henon map and a two-loop negative feedback model
�14� to show how the presence of a delay could produce the
displacement of irreversibility toward higher dimensions and
to highlight the possibility of the coexistence of time scales
with different degrees of irreversibility.

In terms of real data, we tested high-dimensional irrevers-
ibility in heart period �T� beat-to-beat series known to be
regulated by nonlinear multiple delayed feedback loops �the
most relevant over short time scales is baroreflex� �12,15,16�
under experimental conditions altering the baroreflex delay
�17,18� in the beat-to-beat domain.

I. IRREVERSIBILITY TEST

Given a stationary time series x= �x�i� , i=1, . . . ,N� and
the series of vectors xL= ��x�i� ,x�i+�� , . . . ,x(i+ �L−1��)� , i
=1, . . . ,N− �L−1���, constructed using the technique of the
delayed coordinates �19�, x is said to be reversible if the
probability distribution of xL is not significantly different
from that of xL

r = ��x(i+ �L−1��) , . . . ,x�i+�� ,x�i�� , i
=1, . . . ,N− �L−1���, obtained after reversing time’s arrow in
each vector xL�i�. This should hold for any L and any �. In
this work we used �=1 without any a priori assumption
regarding the dimension L.

Most of the irreversibility tests �6–9� are devised for L
=2 �i.e., they consider points in the plane (x�i� ,x�i+1�)�. The
common feature of all tests is that the detection of irrevers-
ibility is based on the evaluation of asymmetry of the data
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distribution in the plane (x�i� ,x�i+1�) with respect to the
main diagonal line x�i�=x�i+1� �7�. Indeed, by definition,
this asymmetry is incompatible with time reversibility. Our
study uses the correspondence between time irreversibility
and asymmetry of the distribution to introduce a test of time
irreversibility in stationary high-dimensional series.

Let us consider the plane (x�i+m� ,x�i+n�) with m ,n
=0, . . . ,L−1 and m�n and denote with dm,n�i� the distance
between the point (x�i+m� ,x�i+n�) and the main diagonal
x�i+m�=x�i+n� �i.e., dm,n�i�=k(x�i+n�−x�i+m�), with k
=2�−1/2��. Our test evaluates L-dimensional irreversibility by
checking the asymmetry of the distribution of points ob-
tained by projecting the L-dimensional reconstructed dynam-
ics onto any orthogonal reference plane (x�i+m� ,x�i+n�),
with m ,n=0, . . . ,L−1. This can be done by testing the asym-
metry of the distribution of dm,n for any n ,m=0, . . . ,L−1
and m�n with respect to 0. The obvious relationships
dm,n�i�=−dn,m�i� and dm,n�i�=d0,�n−m��i+m� for n�m limit
the number of tests to be performed in a stationary time
series to L−1 �i.e., we need to test the asymmetry of the
distribution of d0,m with m=1, . . . ,L−1�.

Any asymmetry measure can be applied to the d0,m distri-
bution. In this study we used the skewness of d0,m,

Sm =

�
i=1

N−m

d0,m�i�3

��
i=1

N−m

d0,m�i�2	3/2 , �1�

with m=1, . . . ,L−1 �9�. When Sm is significantly different
from 0 for a specific m with m�L−1, the series is labeled as
irreversible in the �m+1�-dimensional phase space. If x is
irreversible in the �m+1�-dimensional phase space, it is said
to be L irreversible for any L�m.

To check if Sm is significantly different from 0 we utilized
a surrogate data approach �20�. The null hypothesis is that x
is generated by a linear process being reversible at least up to
the dimension L eventually distorted by a static nonlinear
transformation that does not alter reversibility of x. Accord-

ingly, we generated a set of 500 amplitude-adjusted Fourier
transform �AAFT� surrogates �20�. Sm was calculated over
the surrogate data �Sm

s ’s� and over the original series �Sm
o �. If

Sm
o was smaller than the critical value defining the most ex-

treme 2.5% of Sm
s ’s or larger than the critical value defining

the most extreme 97.5% of Sm
s ’s, the null hypothesis was

rejected and the series was said to be �m+1� irreversible and
generally L irreversible for any L�m.

II. SIMULATED DATA: DELAYED HENON MAP

The first type of simulation is devoted to emphasizing the
need for irreversibility testing for high-dimensional dynam-
ics generated by models including delays. We used the de-
layed Henon map �DHM� to generate a set of time series.
The �-order DHM can be written as

x�i + 1� = 1 − ax2�i − �� + y�i − �� , �2�

y�i + 1� = bx�i − �� , �3�

with a=1.4, b=0.3, and i=�+1, . . . ,N−1. A nondelayed
Henon map has �=0 and produces x that is found to be two
irreversible. When the data is generated from higher-order
DHM, the bidimensional irreversibility test fails to detect
irreversibility. Indeed, the effect of a delay in the DHM is to
displace irreversibility to higher dimensions. In Fig. 1, we
plot the reconstruction of the dynamics of x in the phase
space (x�i� ,x�i+1� ,x�i+2�) for a zeroth-order and first-order
DHM. In the case of the zeroth-order DHM, when the dy-
namics is projected onto the plane (x�i� ,x�i+1�), the points
are asymmetric with respect to the main diagonal x�i�=x�i
+1� �Fig. 1�c��, thus indicating that x is two-irreversible. In
the case of the first-order DHM, when the dynamics is pro-
jected onto the plane (x�i� ,x�i+1�), the points are symmetric
with respect to x�i�=x�i+1� �Fig. 1�d��, thus failing to detect
irreversibility. Irreversibility can be detected only when
evaluating the asymmetry of the projection of the dynamics
onto the plane (x�i� ,x�i+2�) with respect to x�i�=x�i+2�.
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FIG. 1. Realizations of 100 samples of x com-
puted from zeroth-order �a� and first-order �b�
DHMs. Reconstruction of the dynamics of x de-
rived from zeroth-order �c� and first-order DHMs
�d� in the phase space (x�i� ,x�i+1� ,x�i+2�)
�black circles�. The projections of the dynamics
onto the planes (x�i� ,x�i+1�) and (x�i� ,x�i+2�)
are marked with gray circles. In the case of
zeroth-order DHM projections onto the planes
(x�i� ,x�i+1�) and (x�i� ,x�i+2�) are both asym-
metric with respect to the main diagonal of the
plane, while in the case of first-order DHM only
the projection onto (x�i� ,x�i+2�) can reveal the
asymmetry.
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III. SIMULATED DATA: WHITE GAUSSIAN AND
COLORED NOISES

The second type of simulations was aimed at evaluating
the percentage of false rejections �Rf� of the proposed irre-
versibility test. We generated 500 realizations of white
Gaussian noise �WGN� of various lengths. WGN is known to
be reversible �21�, thus we should find Rf =0. In Fig. 2 we
plot Rf in the case of WGN realizations with N=50, 100,
300, 500, and 1000 as a function of L. It is worth noting that
Rf is rather independent on N.

If qm+1 is the probability for a reversible signal to be
detected as irreversible in the (x�i� ,x�i+m�) projection of the
dynamics, the probability of a reversible signal to be found
�m+1� irreversible without rejecting the null hypothesis for
lower dimensions is qm+1
k=2

m �1−qk�. Under the approxima-
tion that qk is independent of the index k, i.e., qk=q2 ∀ k
� �2, . . . ,L�, we can estimate the Rf for an L-dimensional
test as 1− �1−q2�L−1. This relationship �multiplied by 100� is
plotted in Fig. 2 �dotted line�, showing that the estimated
expression acts, indeed, as an upper bound to our data.
Clearly, Rf increases as a function of L �i.e., it is more likely
to have erroneous detection of L-irreversible dynamics when
L is large�. Hence, it is important to select a theoretical func-
tional �here S� and/or to increase the level of confidence of
the surrogate data test in order to have a small q2. In this
study, with a confidence level of 95%, q2 was about 2.5%.
Therefore, in order to have Rf �10%, we limited L to 5,
which is believed to be high for short heart rate variability
data �22�. In general, the largest L that can be reliably ex-
plored can be derived by solving the equation 1− �1−q2�L−1

= p after evaluating q2, where p is the probability of having a
type I error in a multiple testing strategy. Usually p is set to
0.05.

We tested Rf over colored processes obtained by filtering
WGN realizations with a transfer function with two complex

and conjugated poles with modulus equal to 0.9 and phases
equal to �� /5 or phases equal to �3� /5, thus generating
autoregressive processes. In the former case we simulated a
process with a dominant slow oscillation, whereas in the lat-
ter case we simulated a process with a dominant fast oscil-
lation �with a sampling frequency of 1 Hz, the pole fre-
quency is 0.1 Hz or 0.3 Hz, i.e., the frequencies of the usual
dominant oscillations present in heart rate variability�. The
course of Rf relevant to autoregressive process with slow
dynamics was not significantly different from that derived
from WGN �Fig. 2�, while that relevant to the faster autore-
gressive dynamics had the same rate of increase as WGN but
q2 was 30% higher.

IV. SIMULATED DATA: DELAYED HENON MAP
CORRUPTED BY NOISE

The third type of simulations aimed at evaluating the per-
centage of true rejections �Rt� of the proposed irreversibility
test. We added WGN realizations to first-order DHM. The
standard deviation of the WGN realizations was assigned as
a percentage of the uncorrupted DHM dynamics �5%, 50%,
100%, or 150%�. Results, reported in Table I, show that Rt is
100% provided that the standard deviation of the WGN is
below 100%. Since irreversible dynamics are more likely to
be detected at higher L, Rt increases in Table I as a function
of L.

V. SIMULATED DATA: TWO-LOOP NEGATIVE
FEEDBACK MODEL

The fourth type of simulation is devoted to emphasizing
the need of an irreversibility test for high-dimensional dy-
namics generated by models producing different dominant
time scales via multiple delayed feedback loops. Let us con-
sider the two-loop negative feedback model �14� described
by the delayed differential equation

Ṗ�t� = − P�t� +
1

2�
i=1

2
�i

n

�i
n + Pn�t − �i�

. �4�

We set n=45, �1=0.634, and �2=0.704, with delays �1
=0.26 and �2=2.00 and integration step of 0.001, thus gen-
erating a quasiperiodic dynamics �14�. The series was down-
sampled with a downsampling factor of 50 and sequences of

TABLE I. Percentage of true rejections of the multidimensional
irreversibility test applied to first-order DHM �300 samples� cor-
rupted with WGN of different standard deviations �i.e., 0%, 50%,
100%, and 150% of the standard deviation of the uncorrupted first-
order DHM realization�.

L=3 L=4 L=5 L=6 L=7

0 100 100 100 100 100

50 100 100 100 100 100

100 86 87 87 89 90

150 58 61 62 63 65
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FIG. 2. Percentage of L-irreversible dynamics of the multidi-
mensional irreversibility test relevant to 50, 100, 300, 500, and
1000 samples of WGN. Since WGN is reversible, the percentage of
L-irreversible dynamics corresponds to the percentage of false re-
jections �Rf�. The relationship 100� (1− �1−q2�L−1), where q2 is
the probability of detecting two-irreversible dynamics is plotted as a
dotted line.
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about 600 samples were considered. This signal exhibits two
clearly different temporal scales �see Fig. 3�a��: the faster
with a period of about 0.9, while the slower is exhibited with
a period more than three times larger.

Figure 3 shows the scattergrams in the planes (P�t� , P�t
+0.05�), (P�t� , P�t+0.25�), and (P�t� , P�t+2.25�). The distri-
butions of P�t+0.05�− P�t� and P�t+0.25�− P�t� are sym-
metric �Figs. 3�e� and 3�f��, while that of P�t+2.25�− P�t� is
asymmetric �Fig. 3�g��. This simulation suggests that, given
a model showing two dominant time scales �one faster and
one slower�, these two time scales might show different de-
grees of reversibility. Indeed, the distribution of P�t+	t�
− P�t� is asymmetric only when 	t ranges between 2.20 and
2.40, thus linking irreversibility to the slower time scale. On
the contrary, the faster time scale, which needs a time shift 	t
much smaller to be correctly resolved, is not detected as
irreversible.

VI. HEART PERIOD VARIABILITY DATA

We applied the proposed irreversibility test to the heart
period �T� beat-to-beat series �200–300 cardiac beats� de-
rived from 26 young healthy humans undergoing to two dif-
ferent protocols. Ten subjects �ages ranging from 24 to 32�
underwent recordings at rest and during 80° head-up tilt.
Sixteen subjects �ages ranging from 21 to 35� underwent
recordings at rest and standing. ECG �lead II� was sampled at
300 Hz �12-bit precision�. T was derived as the temporal
distance between two consecutive R peaks of ECG signal.
Stationarity of the series was tested as reported in �23�.

Figure 4 shows an example of the T irreversibility analy-
ses for series taken from a subject during tilt and standing. T
series during tilt has a skewness index �S1=0.0368� out of
the 500 surrogate interval �−0.0164;0.0137� being two irre-
versible. Indeed, the distribution of T�i+1�−T�i� is asym-
metric with respect to 0 �Fig. 4�d��. On the contrary, the null

FIG. 3. Quasiperiodic dynamics obtained from the two-loop delayed feedback model �a�. Scattergrams of P�t+0.05� vs P�t� �b�, P�t
+0.25� vs P�t� �c�, P�t+2.25� vs P�t� �d�; distributions of P�t+0.05�− P�t� �e�, P�t+0.25�− P�t� �f�, and P�t+2.25�− P�t� �g� with their
skewness and the interval of skewness derived from surrogates.
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hypothesis of reversibility in the plane (T�i� ,T�i+1�) cannot
be rejected in the case of the T series during standing. In-
deed, the distribution of T�i+1�−T�i� is symmetric with re-
spect to 0 �Fig. 4�e�� with S1=0.0023� �−0.0231;0.0237�.
The same series is found irreversible in the plane (T�i� ,T�i
+3�) �S3=0.0344� �−0.0218;0.0176��, thus being four irre-
versible. Indeed, distribution of T�i+3�−T�i� is asymmetric
with respect to 0 �Fig. 4�f��.

Figure 5 shows the percentages of L-irreversible T series
in each experimental condition. The bars indicate the per-
centage of L-irreversible dynamics with L=5 �the solid part
of the bars represents the percentage of L-irreversible dy-
namics with L=2�. The percentage of two-irreversible dy-
namics during rest was similar to that during standing, while
it increased during tilt. On the contrary, during standing the
percentage of five-irreversible T series increased with respect
to rest and became similar to that during tilt.

VII. DISCUSSION

Simulations relevant to the delayed Henon map and the
two-loop negative feedback clearly demonstrated that irre-
versibility analysis cannot be carried out at arbitrary fixed
and/or low L. Indeed, the presence of a delay in the under-
lying generation mechanism might produce a displacement
of irreversibility toward higher phase space dimensions. In
other words, reversible temporal scales might coexist with
irreversible temporal scales that need higher-dimensional
phase spaces to be completely unfolded and only the explo-

ration of progressively increasing L guarantees the correct
evaluation of this dynamical property. In addition, simula-
tions relevant to reversible processes �i.e., WGN or colored
noises� indicated that the percentage of false rejections in-
creases with L �i.e., it is more likely to erroneously detect
irreversible dynamics at large L�. Therefore, it is mandatory
to adopt theoretical functionals that keep low the probability
of false rejections and/or to increase the level of confidence
of the surrogate data test. Simulations relevant to nonlinear
delayed dynamics corrupted by reversible noise �i.e., WGN�
suggested that the proposed test is quite robust with respect
to noise.

The short-term analysis of T variability indicated that the
T series is irreversible with L=2 in 25% and 27% of subjects
at rest and during standing, respectively �7,24�.

The increase of irreversible dynamics when passing from
L=2 to L=5 is important both at rest and during standing,
thus rendering mandatory the use of an irreversibility test
that explores progressively increasing embedding dimen-
sions. It is worth noting that the increase of irreversible dy-
namics when passing from L=2 to L=5 is more important
during standing. This phenomenon might be related to the
increased phase shift in the closed-loop baroreflex regulation
observed during this experimental condition. Indeed, during
standing the phase between the T and arterial pressure be-
comes more negative at the respiratory rate �25�, thus indi-
cating that the beat-to-beat interactions along the baroreflex
loop do not occur in the same cardiac beat as at rest but with
a delay of one or more beats. The increase of the delay in the
beat-to-beat domain between T and arterial pressure has been
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FIG. 4. Scattergrams of T�i+1� vs T�i� during tilt �a�, T�i+1� vs T�i� during standing �b�, and T�i+3� vs T�i� �c� during standing;
distributions of T�i+1�−T�i� during tilt �d�, T�i+1�−T�i� during standing �e�, T�i+3�−T�i� during standing �f� with their skewness and the
interval of skewness derived from surrogates.
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observed in several experimental conditions characterized by
sympathetic activation such as during lower body negative
pressure �17�, thus supporting the need to look at higher
phase space dimensions during these conditions. Tilt is an-
other experimental condition characterized by a sympathetic
activation. Since T variability exhibits an important percent-
age of L-irreversible dynamics with L=2 �7,24�, the increase
of this percentage as a function of L is not very important.
The larger presence of L-irreversible dynamics with L=2
during tilt than during the sympathetic activation produced
by standing might be due to the larger importance of the
sympathetic activation during tilt that reduces the complexity
of T variability �26� and renders irrelevant the exploration of
higher-dimensional phase spaces. Indeed, during tilt power
spectrum exhibits only a dominant peak in the low-frequency
band �27�, while during standing the power spectrum of heart
period variability is characterized by two clear peaks, in the
low- �from 0.04 to 0.15 Hz� and high-frequency �around the
respiratory rate� bands �28�.

In conclusion, we tested the hypothesis that, in the pres-
ence of a signal characterized by at least two dominant time
scales �e.g., quasiperiodic dynamics generated by a two-loop
negative feedback or short-term heart rate variability�, tem-
poral scales characterized by different degrees of irreversibil-
ity might coexist. In the presence of an increased delay in the
underlying closed-loop regulatory mechanisms and of com-
plex dynamics characterized by several �more than two�
dominant temporal scales, it is advisable to test irreversibility
by exploring progressively increasing embedding dimensions
since irreversibility might be shifted toward slower time
scales.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the CAPES/
Brazil, FIRST 2005 grant, University of Milan, and Italian
Space Agency DCMC Project.

�1� C. Diks et al., Phys. Lett. A 201, 221 �1995�.
�2� M. J. van der Heyden, Phys. Lett. A 216, 283 �1996�.
�3� T. Schreiber and A. Schmitz, Physica D 142, 346 �2000�.
�4� B. P. T. Hoekstra et al., Chaos 7, 430 �1997�.
�5� I. Prigogine and I. Antoniou, Ann. N. Y. Acad. Sci. 879, 8

�1999�.
�6� M. Costa, A. L. Goldberger, and C.-K. Peng, Phys. Rev. Lett.

95, 198102 �2005�.
�7� A. Porta et al., Comput. Cardiol. 33, 77 �2006�.
�8� P. Guzik et al., Biomed. Tech. 51, 272 �2006�.
�9� C. L. Ehlers et al., J. Neurosci. 18, 7474 �1998�.

�10� C. Braun et al., Am. J. Physiol. 275, H1577 �1998�.
�11� M. C. Mackey and L. Glass, Science 197, 287 �1977�.
�12� H. P. Koepchen, in History of Studies and Concepts of Blood

Pressure Waves, edited by K. Niyakawa, C. Polosa, and H. P.
Koepchen �Springer, Berlin, 1984�, pp. 3–23.

�13� D. Hoyer et al., Chaos 17, 015110 �2007�.
�14� J. C. Bastos de Figueiredo, L. Diambra, L. Glass, and C. P.

Malta, Phys. Rev. E 65, 051905 �2002�.
�15� G. Nollo et al., Am. J. Physiol. Heart Circ. Physiol. 283,

H1200 �2002�.
�16� C. Borst et al., J. Auton. Nerv. Syst. 9, 399 �1983�.

0

10

20

30

40

50

60

70

80

90

100

Rest Standing Tilt

Ir
re

ve
rs

ib
ili

ty
%

FIG. 5. Bar graph representing the percentage of five-irreversible dynamics relevant to the analysis of T series at rest, during standing and
tilt. The solid bars indicate the percentage of two-irreversible dynamics.

CASALI et al. PHYSICAL REVIEW E 77, 066204 �2008�

066204-6



�17� A. P. Blaber et al., Am. J. Physiol. 268, H1688 �1995�.
�18� W. H. Cooke et al., J. Physiol. 517, 617 �1999�.
�19� F. Takens, in Dynamical Systems and Tubulence, Lecture

Notes in Mathematicsedited by D. Rand and L. S. Young
�Springer-Verlag, Berlin, 1981�, Vol. 366, pp. 366—381

�20� J. Theiler et al., Physica D 58, 77 �1992�.
�21� G. Weiss, J. Appl. Probab. 12, 831 �1975�.

�22� D. T. Kaplan et al., Biophys. J. 59, 945 �1991�.
�23� A. Porta et al., Comput. Cardiol. 31, 645 �2004�.
�24� K. R. Casali et al., FASEB J. A564, 612.8 �2007�.
�25� A. Porta et al., Comput. Cardiol. 31, 265 �2004�.
�26� A. Porta et al., J. Appl. Physiol. 103, 1143 �2007�.
�27� N. Montano et al., Circulation 90, 1826 �1994�.
�28� D. Lucini et al., J. Hypertens. 18, 281 �2000�.

MULTIPLE TESTING STRATEGY FOR THE DETECTION… PHYSICAL REVIEW E 77, 066204 �2008�

066204-7


